Disaggregating sorghum yield reductions under warming scenarios exposes narrow genetic diversity in US breeding programs.
نویسندگان
چکیده
Historical adaptation of sorghum production to arid and semiarid conditions has provided promise regarding its sustained productivity under future warming scenarios. Using Kansas field-trial sorghum data collected from 1985 to 2014 and spanning 408 hybrid cultivars, we show that sorghum productivity under increasing warming scenarios breaks down. Through extensive regression modeling, we identify a temperature threshold of 33 °C, beyond which yields start to decline. We show that this decline is robust across both field-trial and on-farm data. Moderate and higher warming scenarios of 2 °C and 4 °C resulted in roughly 17% and 44% yield reductions, respectively. The average reduction across warming scenarios from 1 to 5 °C is 10% per degree Celsius. Breeding efforts over the last few decades have developed high-yielding cultivars with considerable variability in heat resilience, but even the most tolerant cultivars did not offer much resilience to warming temperatures. This outcome points to two concerns regarding adaption to global warming, the first being that adaptation will not be as simple as producers' switching among currently available cultivars and the second being that there is currently narrow genetic diversity for heat resilience in US breeding programs. Using observed flowering dates and disaggregating heat-stress impacts, both pre- and postflowering stages were identified to be equally important for overall yields. These findings suggest the adaptation potential for sorghum under climate change would be greatly facilitated by introducing wider genetic diversity for heat resilience into ongoing breeding programs, and that there should be additional efforts to improve resilience during the preflowering phase.
منابع مشابه
Understanding Genetic Diversity of Sorghum Using Quantitative Traits
Sorghum is the important cereal crop around the world and hence understanding and utilizing the genetic variation in sorghum accessions are essential for improving the crop. A good understanding of genetic variability among the accessions will enable precision breeding. So profiling the genetic diversity of sorghum is imminent. In the present investigation, forty sorghum accessions consisting o...
متن کاملAssessing genetic diversity of promising wheat (Triticum aestivum L.) lines using microsatellite markers linked with salinity tolerance
Narrow genetic variability may lead to genetic vulnerability of field crops against biotic and abiotic stresses which can cause yield reduction. In this study a set of 37 wheat microsatellite markers linked with identified QTLs for salinity tolerance were used for the assessment of genetic diversity for salinity in 30 promising lines of hexaploid bread wheat (Triticum aestivum L.). A total of 4...
متن کاملبررسی تنوع ژنتیکی در ژنوتیپهای سورگوم با استفاده از نشانگرهای ریزماهواره
Sorghum is the fifth degree of importance in the production of cereal after wheat, rice, maize and barley. Genetic diversity estimation of plant material is primary step for identification, protection and conservation of germplasm and breeding programs designing. In order to study of genetic diversity among 10 genotypes of grain sorghum, 10 microsatellite primers were used according to previous...
متن کاملImprovement of Sorghum through Transgenic Technology
Sorghum is the fifth most important cereal crop in the world. It is largely grown on marginal soils with residual moisture where other major cereals cannot be grown due to inadequate water. Sorghum is a multipurpose crop and the species shows great diversity. For a large part of Asia and Africa, sorghum’s grain is used as food and its stalk as fodder and feed. In rest of the world, sorghum is c...
متن کاملEvaluation of Traits and Genetic Diversity of Sugar Beet O-Type Lines for Rhizomania Tolerance using SSR Molecular Marker
Extended Abstract Introduction and Objective: Sugar beet is one of the most important agricultural products in the world and most of the sugar consumed in our country is prepared from this plant. Plant breeding programs are based on creating variety and selection of quantitative and qualitative traits. Examining genetic diversity is the first step in breeding programs. Material and Methods: I...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 114 35 شماره
صفحات -
تاریخ انتشار 2017